This guide provides suggestions and high-level steps for developers looking to use models from the NeuroFlux project in their Android applications. While NeuroFlux focuses on creating highly optimized models for edge devices, it does not directly output pre-built Android applications (APKs). Instead, it provides models in formats like TFLite, which are well-suited for Android deployment.
The NeuroFlux project, particularly through the scripts in the huggingface/
directory (e.g., neuroflux.py
using NeuroFluxDataset
), can generate .tflite
models. These models are optimized for mobile and edge devices.
Here’s a general workflow to integrate these TFLite models into your Android application:
huggingface/neuroflux.py
script as described in the Quickstart Guide to produce .tflite
model files..tflite
file (e.g., mobilenet_optimized.tflite
) you intend to deploy.minSdkVersion
is compatible with the TensorFlow Lite library requirements.build.gradle
file (usually app/build.gradle
).dependencies {
// ... other dependencies
implementation 'org.tensorflow:tensorflow-lite:2.9.0' // Example version, use the latest
// For GPU delegation, you might need:
// implementation 'org.tensorflow:tensorflow-lite-gpu:2.9.0' // Example version
// For specific task libraries (e.g., vision, nlp):
// implementation 'org.tensorflow:tensorflow-lite-task-vision:0.4.0' // Example version
}
app/src/main/
.main
directory and select New > Directory
. Name it assets
..tflite
model file into this app/src/main/assets/
directory.Load and Run the Model in Your Code (Java/Kotlin):
// Java Example
import org.tensorflow.lite.Interpreter;
import java.io.FileInputStream;
import java.io.IOException;
import java.nio.MappedByteBuffer;
import java.nio.channels.FileChannel;
import android.content.res.AssetFileDescriptor;
private MappedByteBuffer loadModelFile(String modelName) throws IOException {
AssetFileDescriptor fileDescriptor = this.getAssets().openFd(modelName);
FileInputStream inputStream = new FileInputStream(fileDescriptor.getFileDescriptor());
FileChannel fileChannel = inputStream.getChannel();
long startOffset = fileDescriptor.getStartOffset();
long declaredLength = fileDescriptor.getDeclaredLength();
return fileChannel.map(FileChannel.MapMode.READ_ONLY, startOffset, declaredLength);
}
try {
Interpreter tflite = new Interpreter(loadModelFile("your_model.tflite"));
// For GPU delegation:
// Interpreter.Options options = new Interpreter.Options();
// GpuDelegate delegate = new GpuDelegate();
// options.addDelegate(delegate);
// Interpreter tflite = new Interpreter(loadModelFile("your_model.tflite"), options);
} catch (IOException e) {
Log.e("TFLite-Error", "Error loading model file: " + e.getMessage());
}
Prepare Input Data:
The input data needs to be converted into a ByteBuffer
with the correct shape and data type that your model expects. This often involves preprocessing images, text, or other data. Refer to the model’s documentation or use the TensorFlow Lite Task Library for easier input handling.
// Assuming 'inputBuffer' is your prepared ByteBuffer and 'outputBuffer' is allocated
// tflite.run(inputBuffer, outputBuffer);
outputBuffer
according to your model’s output specifications.AndroidManifest.xml
.This provides a basic outline. Actual implementation details will vary based on the specific model and application requirements.
While TensorFlow Lite is a common choice for Android, the NeuroFlux project’s models (especially if available in ONNX format or convertible to it) can also be deployed using other inference engines that support mobile platforms. As mentioned in the Quickstart Guide, these include:
webapp/
directory in this project demonstrates NCNN usage for the NanoDet-Plus model.Choosing an inference engine depends on factors like the original model format, performance requirements, hardware acceleration needs (CPU, GPU, DSP), and the complexity of integrating the engine into your Android application.